
Multithreading for Linear Algebra in Multithreading for Linear Algebra in
Distributed Memory EnvironmentsDistributed Memory Environments

Parry Husbands
Interactive Supercomputing

[Joint work with Esmond Ng (LBNL) and Katherine Yelick (LBNL/UCB)]

2

Our Road to MultithreadingOur Road to Multithreading

 Distributed Memory programming challenges
 Expressibility

 Many algorithmic constructs tortuous to implement
 Performance

 Synchronous codes spend an excessive amount of time waiting
 Asynchronous memory operations boost performance

 Modern out-of-order processors
 MPI_Isend()/MPI_Irecv()

 How do we organize programs with many outstanding requests?
 Threads have a natural latency tolerance for both algorithmic and

communication latencies
 Write distributed memory code in a multithreaded style!

3

LU Factorization with Partial PivotingLU Factorization with Partial Pivoting

 A simple but heavily used computational kernel.
 Available in Linpack/LAPACK/ScaLAPACK.

 LAPACK/ScaLAPACK are the second top mathematical libraries at
the National Energy Research Scientific Computing Center, a
national high performance computing facility funded by the Office
of Science in the U.S. Department of Energy.

 HPL benchmark.
 Highly tuned parallel block LU factorization with partial pivoting.

4

Select pivots
from this
column

Update this
portion of
the matrix

1 i n

LU Factorization with Partial Pivoting (2)LU Factorization with Partial Pivoting (2)

for i=1:n-1
swap rows so |a(i,i)| = max{abs(a(:,i))}
for j=i+1:n

l(j,i) = a(j,i)/a(i,i)
for j=i:n

u(i,j)=a(i,j)
for j=i+1:n

for k=i+1:n
a(j,k) = a(j,k)-l(j,i)*u(i,k)

Parallel Tasks in LUParallel Tasks in LU

 Panel Factorizations (parallel recursive formulation used)
 Pivot application and update to U
 Trailing matrix updates

some edges omitted

Distributed Memory Multithreading with UPCDistributed Memory Multithreading with UPC
 Co-operative multi-threading used to mask latency and to mask

dependence delays (home-grown package)
 Non-blocking (remote get) transfers to mask communication latency
 Remote enqueue used to spawn remote threads. Threads are placed to

take advantage of locality
 Matrix blocks distributed in 2-d block-cyclic manner (fixed layout) and

tuned for block size
 Three levels of threads:

 UPC threads (data layout, each runs an event scheduling loop)
 Multithreaded BLAS (boost efficiency)
 User level (non-preemptive) threads with explicit yield

 Operations “fire” when dependencies are satisfied (use a per proc.
scoreboard). “Lookahead” is therefore dynamic (as in many shared
mem. codes)

The ThreadsThe Threads
 Co-operative threads

 Remove need to maintain integrity of data structures throughout
program

 Experimented with GNU Pth, POSIX Threads,
Hand rolled user-level threads for portability
 Uses only function calls and returns (fast context switches)
 “Interesting” use of Duff's Device
 Macros: PTP_SPAWN, PTP_FUNCALL, PTP_YIELD,

 PTP_START, PTP_END
 Suspend, resume, priorities
 Custom script expands, computes jumps, rewrites local (stack) accesses,

creates functions for arguments, etc.
 Allows for many threads to be created/destroyed per processor

Utilization ComparisonUtilization Comparison

 Synchronous (above)
vs. asynchronous (below)
schedule

 SGI Altix Itanium 2
1.4GHz, n=12,800,
process grid = 2x4, block
size = 400

 Grey blocks = matrix
multiplication

 Black blocks = panel
factorization

UPC HP Linpack PerformanceUPC HP Linpack Performance

Faster than ScaLAPACK (less synchronization), comparable to MPI/HPL
Large scaling of UPC code on Itanium/Quadrics (Thunder)

 2.2 TFlops on 512p and 4.4 TFlops on 1024p
 91.8% of peak on 1p Itanium 2 1.5GHz, 81.9% on 1p Opteron 2.2GHz

Linpack Performance

0
200

400
600
800

1000

1200
1400

X1/64 X1/128 Opt/64 Alt/32
machine / # Procs

G
Fl

op
/s

HPL/MPI
UPC

Scheduling: The Major IssueScheduling: The Major Issue
 Critical operation: Panel Factorization

 need to satisfy its dependencies first
 perform trailing matrix updates with low block numbers first

 Use a Priority Queue to schedule these
 panel factorizations started as soon as blocks of next panel are

ready
 Theoretical and practical problem: Memory utilization

 Not enough memory for all tasks at once. (Each update needs two
temporary blocks, one from L, one from U)

 If updates are scheduled too soon, you will run out of memory
 Allocate memory in increasing order of factorization and don't skip

any!
 Thread blocks until enough memory available

 Cache performance: Too many dgemms to worry about the cache

11

Sparse Matrix FactorizationSparse Matrix Factorization

12

Sparse Matrix FactorizationSparse Matrix Factorization

 Same basic algorithms used …
but

 For efficiency we must take
care to avoid operating on as
many zero elements as possible

 Many variants due to symmetry,
different orderings of basic
factorization loop (left-looking,
right-looking, multifrontal)

 High degree of parallelism (due
to sparsity), but finer-grained
(due to fewer nonzero elements)

13

Sparse Cholesky FactorizationSparse Cholesky Factorization

 Based on left-looking, blocked serial code of Ng and Peyton
 Choice of blocks to enhance performance via level-3 BLAS

operations
 Block columns receive updates from earlier block columns
 After all updates are received, a block column is factorized

 Complications
 Dependency graph
 Scoreboard no longer simple
 How do we choose the “best” operation to perform?

 Longest path in chain of dependencies?
 Weight this by amount of work?

14

Our Multithreaded ImplementationOur Multithreaded Implementation

 Strategy
 Use analysis to figure out dependencies and importance of each

update
 Threads for block column-block column updates
 Set thread priorities based on importance

Critical operations scheduled based on dependency graph
Memory utilization controlled by performing critical ops first.
Cache: What's a good schedule for this?

15

Preliminary Cholesky PerformancePreliminary Cholesky Performance

 Results obtained in SGI Altix (1.4GHz Itanium 2)
 Performance in seconds

 But... 1p performance not competitive with original serial
version! So back to the drawing board...

16

Conclusion and Open QuestionsConclusion and Open Questions

 Portable addition of cooperative threads and remote function
invocation to UPC

 High performance UPC version of Linpack Benchmark in ~5K
LOC

 Sparse Cholesky still has issues
 Need more thinking about scheduling

 Remember the scheduler's influence on
 Critical tasks
 Memory
 Cache

ExtrasExtras

18

Asynchronous ImplementationsAsynchronous Implementations

 MPI
 Use non-blocking communication primitives

• MPI_ISend()/MPI_IRecv()/MPI_IBcast()
 Poll for incoming messages then perform work

 Multithreaded languages (PThreads, Cilk, …)
 Use threads for each major operation

• Each thread is a computational task that shares the CPU with other
such tasks

 Thread synchronization primitives manage algorithm dependencies
• Give up the CPU (yield) to another thread when a long-latency network

call is made
• Suspend and resume other threads that may interfere with current

work

19

Parallel PerformanceParallel Performance
 SGI Altix

 8 procs (2 x 4 grid, n = 25,600)
 ScaLAPACK (synchronous)

25.25 GFlop/s (best block size 64)
 UPC LU (asynchronous)

33.60 GFlop/s (best block size 256)
 33% increase in performance

 16 procs (4 x 4 grid, n = 32,000)
 ScaLAPACK (synchronous)

43.34 GFlop/s (block size 64)
 UPC LU (asynchronous)

70.26 Gflop/s (block size 200)
 62% increase in performance

20

Communication RequirementsCommunication Requirements

 Processors usually arranged in a 2D grid.
 Reductions (finding the maximum in a distributed column) for

pivot selection.
 A gather operation.

 Row Exchanges for application of pivot sequence.
 Row Broadcasts for

 Trailing matrix updates.
 Updates to U.

 Column Broadcasts for trailing matrix updates.

21

Some Open CS IssuesSome Open CS Issues

Future Investigations:
 How do things change with pre-emptive threads?
 Can we get support for remote enqueue and spawning?
 How to exert control over the local schedule in a principled

way?
 Deadlock avoidance in resource allocation?

22

 Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Finished part of U

A(i,i)

A(j,k)

A(i,k)

Co
mp
let
ed

mu
ltip
lier
s A(j,i)

Panel being factored

Trailing matrix

Part of U to
be updated.

Finished part of U

A(i,i)

A(j,k)

A(i,k)
Finished
part
of
L

A(j,i)

Panel being factored

Trailing matrix
To be updated

Blocks 2D
block-cyclic
distributed
for load
balancing

Panel factorizations
involve communication
for pivoting Matrix-

matrix
multiplication
used here.
Can be coalesced

Matrix decomposed
into blocks

HPL (Parallel Block LU Factorization)HPL (Parallel Block LU Factorization)

23

Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Synchronous codes
 Pause other processors during panel factorization
 Wait until trailing matrix update is complete before starting next

factorization
 Less performance
 Easier to write

24

Synchronous vs. Asynchronous CodesSynchronous vs. Asynchronous Codes

 Asynchronous codes
 Exploit overlap - do something useful while waiting for data
 Panel factorization can start as soon as data is ready
 Trailing matrix updates overlapped with factorizations and other

updates
 Peak performance
 Harder to write
 Networking technology, infrastructure not always there

J.B. White & S.W. Bova. “Where’s the overlap?” (1999).

